
Multithreading for Linear Algebra in Multithreading for Linear Algebra in
Distributed Memory EnvironmentsDistributed Memory Environments

Parry Husbands
Interactive Supercomputing

[Joint work with Esmond Ng (LBNL) and Katherine Yelick (LBNL/UCB)]

2

Our Road to MultithreadingOur Road to Multithreading

 Distributed Memory programming challenges
 Expressibility

 Many algorithmic constructs tortuous to implement
 Performance

 Synchronous codes spend an excessive amount of time waiting
 Asynchronous memory operations boost performance

 Modern out-of-order processors
 MPI_Isend()/MPI_Irecv()

 How do we organize programs with many outstanding requests?
 Threads have a natural latency tolerance for both algorithmic and

communication latencies
 Write distributed memory code in a multithreaded style!

3

LU Factorization with Partial PivotingLU Factorization with Partial Pivoting

 A simple but heavily used computational kernel.
 Available in Linpack/LAPACK/ScaLAPACK.

 LAPACK/ScaLAPACK are the second top mathematical libraries at
the National Energy Research Scientific Computing Center, a
national high performance computing facility funded by the Office
of Science in the U.S. Department of Energy.

 HPL benchmark.
 Highly tuned parallel block LU factorization with partial pivoting.

4

Select pivots
from this
column

Update this
portion of
the matrix

1 i n

LU Factorization with Partial Pivoting (2)LU Factorization with Partial Pivoting (2)

for i=1:n-1
swap rows so |a(i,i)| = max{abs(a(:,i))}
for j=i+1:n

l(j,i) = a(j,i)/a(i,i)
for j=i:n

u(i,j)=a(i,j)
for j=i+1:n

for k=i+1:n
a(j,k) = a(j,k)-l(j,i)*u(i,k)

Parallel Tasks in LUParallel Tasks in LU

 Panel Factorizations (parallel recursive formulation used)
 Pivot application and update to U
 Trailing matrix updates

some edges omitted

Distributed Memory Multithreading with UPCDistributed Memory Multithreading with UPC
 Co-operative multi-threading used to mask latency and to mask

dependence delays (home-grown package)
 Non-blocking (remote get) transfers to mask communication latency
 Remote enqueue used to spawn remote threads. Threads are placed to

take advantage of locality
 Matrix blocks distributed in 2-d block-cyclic manner (fixed layout) and

tuned for block size
 Three levels of threads:

 UPC threads (data layout, each runs an event scheduling loop)
 Multithreaded BLAS (boost efficiency)
 User level (non-preemptive) threads with explicit yield

 Operations “fire” when dependencies are satisfied (use a per proc.
scoreboard). “Lookahead” is therefore dynamic (as in many shared
mem. codes)

The ThreadsThe Threads
 Co-operative threads

 Remove need to maintain integrity of data structures throughout
program

 Experimented with GNU Pth, POSIX Threads,
Hand rolled user-level threads for portability
 Uses only function calls and returns (fast context switches)
 “Interesting” use of Duff's Device
 Macros: PTP_SPAWN, PTP_FUNCALL, PTP_YIELD,

 PTP_START, PTP_END
 Suspend, resume, priorities
 Custom script expands, computes jumps, rewrites local (stack) accesses,

creates functions for arguments, etc.
 Allows for many threads to be created/destroyed per processor

Utilization ComparisonUtilization Comparison

 Synchronous (above)
vs. asynchronous (below)
schedule

 SGI Altix Itanium 2
1.4GHz, n=12,800,
process grid = 2x4, block
size = 400

 Grey blocks = matrix
multiplication

 Black blocks = panel
factorization

UPC HP Linpack PerformanceUPC HP Linpack Performance

Faster than ScaLAPACK (less synchronization), comparable to MPI/HPL
Large scaling of UPC code on Itanium/Quadrics (Thunder)

 2.2 TFlops on 512p and 4.4 TFlops on 1024p
 91.8% of peak on 1p Itanium 2 1.5GHz, 81.9% on 1p Opteron 2.2GHz

Linpack Performance

0
200

400
600
800

1000

1200
1400

X1/64 X1/128 Opt/64 Alt/32
machine / # Procs

G
Fl

op
/s

HPL/MPI
UPC

Scheduling: The Major IssueScheduling: The Major Issue
 Critical operation: Panel Factorization

 need to satisfy its dependencies first
 perform trailing matrix updates with low block numbers first

 Use a Priority Queue to schedule these
 panel factorizations started as soon as blocks of next panel are

ready
 Theoretical and practical problem: Memory utilization

 Not enough memory for all tasks at once. (Each update needs two
temporary blocks, one from L, one from U)

 If updates are scheduled too soon, you will run out of memory
 Allocate memory in increasing order of factorization and don't skip

any!
 Thread blocks until enough memory available

 Cache performance: Too many dgemms to worry about the cache

11

Sparse Matrix FactorizationSparse Matrix Factorization

12

Sparse Matrix FactorizationSparse Matrix Factorization

 Same basic algorithms used …
but

 For efficiency we must take
care to avoid operating on as
many zero elements as possible

 Many variants due to symmetry,
different orderings of basic
factorization loop (left-looking,
right-looking, multifrontal)

 High degree of parallelism (due
to sparsity), but finer-grained
(due to fewer nonzero elements)

13

Sparse Cholesky FactorizationSparse Cholesky Factorization

 Based on left-looking, blocked serial code of Ng and Peyton
 Choice of blocks to enhance performance via level-3 BLAS

operations
 Block columns receive updates from earlier block columns
 After all updates are received, a block column is factorized

 Complications
 Dependency graph
 Scoreboard no longer simple
 How do we choose the “best” operation to perform?

 Longest path in chain of dependencies?
 Weight this by amount of work?

14

Our Multithreaded ImplementationOur Multithreaded Implementation

 Strategy
 Use analysis to figure out dependencies and importance of each

update
 Threads for block column-block column updates
 Set thread priorities based on importance

Critical operations scheduled based on dependency graph
Memory utilization controlled by performing critical ops first.
Cache: What's a good schedule for this?

15

Preliminary Cholesky PerformancePreliminary Cholesky Performance

 Results obtained in SGI Altix (1.4GHz Itanium 2)
 Performance in seconds

 But... 1p performance not competitive with original serial
version! So back to the drawing board...

16

Conclusion and Open QuestionsConclusion and Open Questions

 Portable addition of cooperative threads and remote function
invocation to UPC

 High performance UPC version of Linpack Benchmark in ~5K
LOC

 Sparse Cholesky still has issues
 Need more thinking about scheduling

 Remember the scheduler's influence on
 Critical tasks
 Memory
 Cache

ExtrasExtras

18

Asynchronous ImplementationsAsynchronous Implementations

 MPI
 Use non-blocking communication primitives

• MPI_ISend()/MPI_IRecv()/MPI_IBcast()
 Poll for incoming messages then perform work

 Multithreaded languages (PThreads, Cilk, …)
 Use threads for each major operation

• Each thread is a computational task that shares the CPU with other
such tasks

 Thread synchronization primitives manage algorithm dependencies
• Give up the CPU (yield) to another thread when a long-latency network

call is made
• Suspend and resume other threads that may interfere with current

work

19

Parallel PerformanceParallel Performance
 SGI Altix

 8 procs (2 x 4 grid, n = 25,600)
 ScaLAPACK (synchronous)

25.25 GFlop/s (best block size 64)
 UPC LU (asynchronous)

33.60 GFlop/s (best block size 256)
 33% increase in performance

 16 procs (4 x 4 grid, n = 32,000)
 ScaLAPACK (synchronous)

43.34 GFlop/s (block size 64)
 UPC LU (asynchronous)

70.26 Gflop/s (block size 200)
 62% increase in performance

20

Communication RequirementsCommunication Requirements

 Processors usually arranged in a 2D grid.
 Reductions (finding the maximum in a distributed column) for

pivot selection.
 A gather operation.

 Row Exchanges for application of pivot sequence.
 Row Broadcasts for

 Trailing matrix updates.
 Updates to U.

 Column Broadcasts for trailing matrix updates.

21

Some Open CS IssuesSome Open CS Issues

Future Investigations:
 How do things change with pre-emptive threads?
 Can we get support for remote enqueue and spawning?
 How to exert control over the local schedule in a principled

way?
 Deadlock avoidance in resource allocation?

22

 Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Part of U to
be updated.

Finished part of U

A(i,i)

A(j,k)

A(i,k)
Finished
part
of
L

A(j,i)

Panel being factored

Trailing matrix
To be updated

Blocks 2D
block-cyclic
distributed
for load
balancing

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Matrix decomposed
into blocks

HPL (Parallel Block LU Factorization)HPL (Parallel Block LU Factorization)

23

Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Synchronous codes
 Pause other processors during panel factorization
 Wait until trailing matrix update is complete before starting next

factorization
 Less performance
 Easier to write

24

Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Asynchronous codes
 Exploit overlap - do something useful while waiting for data
 Panel factorization can start as soon as data is ready
 Trailing matrix updates overlapped with factorizations and other

updates
 Peak performance
 Harder to write
 Networking technology, infrastructure not always there

J.B. White & S.W. Bova. “Where’s the overlap?” (1999).

